If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3^x*19683^x=9
We move all terms to the left:
3^x*19683^x-(9)=0
Wy multiply elements
59049x^2-9=0
a = 59049; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·59049·(-9)
Δ = 2125764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2125764}=1458$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1458}{2*59049}=\frac{-1458}{118098} =-1/81 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1458}{2*59049}=\frac{1458}{118098} =1/81 $
| 3x*19683^x=9 | | 5(4n-7)=-195 | | (3x+1)*(27^3+x)=9 | | 95=5(5+2k) | | 3m+5m=-24 | | 2^8/8^x=4^x | | 3x^2-4x+2=6x-1 | | ((2k-8)2)+(k+2)2=4k | | 10v+8v=14 | | -5(x-2)=-2(2x-3)-x | | 11-6n=-37 | | 4x-36=-2 | | 3(x-20)-(x+5)=17 | | 1/2x+1=3/3x-8 | | 6(2)+(d+5)2=96 | | 10x+8x+11=0 | | 13x-7x=34 | | -4=1/3(6m-54) | | 4x-93=3.5x-9 | | -3(a-4)=9a-4 | | 2=n=16 | | 3x/7=8/15 | | -3+p-4=8-4 | | 4+x-2=6 | | 3+x-4=0 | | 2(s+9)-5s=90-12s | | 2(s+9)-5s=90-125 | | x-2+3=-7+2 | | 11^(x+3)=15^9x | | 22p+37=16p-17 | | 21+7v=20v-18 | | 81-6g=3g |